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Aggregation Dynamics in a Self-Gravitating 
One-Dimensional Gas 
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Aggregation of mass by perfectly inelastic collisions in a one-dimensional self- 
gravitating gas is studied. The binary collisions are subject to the laws of mass 
and momentum conservation. A method to obtain an exact probabilistic 
description of aggregation is presented. Since the one-dimensional gravitational 
attraction is confining, all particles will eventually form a single body. The 
detailed analysis of the probability P,(t) of such a complete merging before time 
t is performed for initial states of n equidistant identical particles with 
uncorrelated velocities. It is found that for a macroscopic amount of matter 
(n --* oo ), this probability vanishes before a characteristic time t*. In the limit of 
a continuous initial mass distribution the exact analytic form of P,,(t) is derived. 
The analysis of collisions leading to the time-variation of P,(t) reveals that in 
fact the merging into macroscopic bodies always occurs in the immediate 
vicinity of t*. For t > t*, and n large, P,,(t) describes events corresponding to the 
final aggregation of remaining microscopic fragments. 

KEY WORDS: Inelastic collisions; gravitational forces; aggregation of mass. 

1. I N T R O D U C T I O N  

O u r  objec t  in this p a p e r  is to s tudy  the d y n a m i c s  of  a o n e - d i m e n s i o n a l  gas 
c o m p o s e d  of  n po in t  par t ic les  coup led  by  g r a v i t a t i o n a l  i n t e rac t ion ,  a n d  
aggrega t ing  via  perfect ly ine las t ic  col l is ions.  Th e  agg rega t ion  process  leads  
even tua l ly  to the c r ea t i on  of  a s ingle mass  o u t  of  the  in i t ia l  dus t  of  par -  
ticles. Althoug,h the m e t h o d  is s imi la r  to tha t  used in the  s tudy  of  bal l is t ic  
agg rega t ion  I~1, the physics  of  f o r m a t i o n  of  mass ive  aggregates  in the  
presence  of  g rav i ty  differs s u b s t an t i a l l y  f rom the  bal l is t ic  case by  the  
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appearance of a finite time scale characterizing the gravitation-dominated 
regime. 

The potential energy of a pair of particles occupying positions xr and 
.vj equals 

?~mimi Ix;-:91 (1) 

where mr and mj are their masses, and y denotes the gravitational constant. 
The motion of the system between collisions corresponds thus to the 
Hamiltonian 

p2 
~. z_~__, + y m ~ m j l x r - x j [  (2) 

i=l zm i  i<j 

where Pr is the momentum of particle i. 
When two particles collide they merge instantaneously forming a 

single point mass. These perfectly inelastic collisions are subject to the 
momentum and mass conservation laws. The particle formed out of par- 
ticles i and j thus has the mass (mr + rnj), and the momentum (p ;+  pj). 

In one dimension only the nearest neighbors can collide. Given the 
initial configuration 

xl < x 2 <  "'" <x,,  (3) 

the equations of motion of the neighboring pair (i, i + 1 ) corresponding to 
the Hamiltonian (2) read 

daxi  
dt'- - )~(rnr+ i + A M , .  r+ I~) 

d2xi+ 1 
dt z - y (AMci ,  i + l ) - m i )  

(4) 

where 

~,, i--I 
AM(i,i+l) = m j -  ~" mj 

j = i + 2  j = l  

is the difference between the mass of the system to the right and to the left 
of the pair (i, i +  1). 

The fundamental remark about the aggregation dynamics is that when 
an inelastic collision between particles i and i + 1 occurs the newly formed 
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mass (mi + mj) follows the trajectory of their center of mass. Indeed, this 
trajectory satisfies the equation 

d2 (rnix~+m~+~x_~+l)= 

which is precisely the equation of motion of the aggregate (mi+mi+~).  
As at the moment of formation the new particle is on the trajectory of the 
center of mass and acquires instantaneously its momentum, its further 
motion reduces to the continuation of the center of mass displacement. 
This remarkable property of the gravitational interaction (1) enables us to 
extend the method developed by us in the study of ballistic aggregation to 
the qualitatively different case of gravitational forces. 

In this paper we shall be mainly concerned with information which 
can be obtained from the knowledge of the probability P,,(t) to find at time 
t a single mass M =  nh + m2 + ... +m,,. However, the approach used to 
derive a microscopic formula for P,,(t) is general, and can be applied to 
study other quantities relevant to the dynamics of the aggregating gas. 

In order to derive a formula for P,,(t), let us consider the partition of 
the whole system into two adjacent clusters containing particles { 1, 2 ..... r} 
and {r + 1 ..... 17}. The centers of mass of the clusters occupy at t = 0  some 
points X"(0) and X"-r (0)  with 

x r ( 0 ) < x  . . . .  (0) 

[see Eq. (3)]. The necessary and sufficient condition for merging of the 
whole system into a single mass within the time interval (0, t] can be 
formulated as the requirement that for any partition into r and ( n - r )  
particles the centers of mass of the two clusters cross before the moment t 

X~(t) >1 X . . . .  (t), r = 1, 2 ..... n - 1 (6) 

The reasoning here is identical to that applied to the ballistic case. It consists 
in realizing that the aggregates move along the center-of-mass trajectories, 
and thus the presence at time t of two (or more) masses is equivalent to an 
unperturbed motion of two (or more) center-of-mass trajectories. 

We conclude that the probability of a complete aggregation of the gas 
into a single massive particle before time t is given by the formula 

~J7 -- 1 
P,,(t) = ,  r =[I10(Xr(t) -- X . . . .  (t)) ~ (7) 

where 0 is a unit step function, and the brackets ( . . )  denote the average 
over the distribution of initial masses (the state of the system at t -- 0). 
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2. INITIAL STATE 

We shall suppose here that at the initial moment t = 0 the interacting 
gas is composed of identical particles of mass m equally spaced at distance 
a on the line 

xj =ja, j =  1, 2 ..... n (8) 

In this case the centers of mass of the clusters {1 ..... r} and { r +  1,..., n} 
occupy points 

a 
Xr(O) = (r + 1)~ 

and 

a 
X~-r(O) = (n + r + 1)~ 

respectively. 
Using the explicit formulas 

Xr( t )=(r+l ) -~+ r vj t + 7 ( n - r ) m ~  
I (9) 

a 1 / n ) t 2 
-[- - -  ~ j=~.+  , t - -7 rm--  X . . . .  ( t ) = ( n + r +  1)~ n--r  vj 2 

we thus find that the characteristic function corresponding to inequalities 
(6) has the form 

n - -  1 

I-[ o { x r ( t )  - x  . . . .  (t)} 
r = l  

= 0 vJ-- n Z v j + m z - - - - ~ ;  (10) 
r = l  1 J 1 

where 

m 
p ~ m  

a 

is the initial mass density of the system and the variable z is related to 
time t by 

1 
r = T t - - -  (11) 

pt 
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We shall study the case where in the initial state no correlations between 
the velocities of the particles are present, and each particle has the same 
velocity distribution with a symmetric probability density ~(v)=~b(-v).  
Then, the probability (7) of formation of a single mass M = n m ,  written 
now as a function of r, takes the form 

x I-I 0 vj--  n ' =  v j + m z  
r = l  j 1 j 1 

Performing the change of the integration variables 

V , . = v ~ + v 2 +  . . .  +Vr,  r =  1, 2,...,n 

we eventually find 

(12) 

(13) 

f ,  f 

j av,  ... 3 av.  v , ) . . . o ( v o -  vo_,) 

r(n -- r ) ]  
"-'  r mr  - - - 5 - - - ~  •  v r - - v , , +  (14) 
r = l  n 

Equations (10) and (14) reveal the existence of a characteristic time related 
to the gravitational attraction. This is ~ = 0, or 

1 
t = t *  (15) 

It turns out that the time t* plays an essential role in the dynamics of 
aggregation. 

3. C H A R A C T E R I S T I C  T I M E  

The relevance of the time scale related to t* is most clearly seen when 
one considers the case of the initial cloud of particles being at rest 

~b(u) =~(u)  (16) 

(d denotes the Dirac distribution). The further evolution is entirely induced 
by gravitational attraction. Eq. (14) reduces then to the simple formula 

e , ( r )  = 0(r) = O(t - t*) (17) 
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When t < t *  no collision takes place. Then, all particles collide 
simultaneously, precisely at the moment t*. For t > t* the system is trans- 
formed into a single mass with probability 1. One can expect in general 
important changes in the structure of the gravitating gas (macroscopic 
aggregation) to take place in the vicinity of t*. 

In order to further investigate the role of this time scale let us analyze 
the case of the velocity distribution with ~(u) vanishing outside a finite 
interval [ - Vm~x, Vma~ ]. The argument of the 0 function in Eq. (11 ) has the 
form 

fr( vl ..... v,,) + m r  - -  

r(n -- r) 

where 

r n 

fr(V, ..... v,,) =j=,  Oj--n l Z=, vj (18) 

When 

[jE[--1) . . . .  O m a x ] ,  j = l , 2 , . . . , n  

the minimal and the maximal values of the function fAvj,..., v,,) equal 
-2Vmaxr(n-r) /n  and +2Vm~,r(n- r)/n, respectively. It follows that when 

m ' c  
r(n - r) r(n - i")  

< --2Vm, x - -  
2 n 

the complete aggregation cannot take place, whereas for 

m T  I 
r(n -- r) > 2Vmax 1"(17 - -  r) 

2 n 

the formation of a single mass nm must have occurred. We thus conclude 
that 

{~ if z > 4Vmax/nm 
P"(r)  = if r < -4Vmax/nm (19) 

We observe from (2) that typical kinetic and potential energies in the 
system are of the order Eki . = nmVm,x2 and E p o  t = yn m-a, repectively. When 
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expressed in terms of variable t, Eq. (19) implies that the complete aggrega- 
tion is impossible when 

t g]~ki n J Eki n 
t--~< --2 k / ~ +  l+4~pot  (20) 

but it occurs with certainty if 

~ , >  2 Ekin J Ekin ~ +  1 + 4  (21) 
Epot 

These inequalities are entirely expressed in terms of the dimensionless 
parameter Eki,/Epot=V~axp/n2m'-'y. One sees that the probability P,,(r) 
becomes a step function in the gravity-dominated regime Eki n ,~ Epo t. In 
particular, when Vmax ~ 0, the result (17) is recovered. 

It is to be noticed at this point that the ideally inelastic collisions 
always reduce the kinetic energy (the amount of energy lost in a binary 
collision equals the kinetic energy of the reduced mass moving with the 
relative velocity). It follows that at the initial stage of the evolution v,,ax 
gets reduced which favors the manifestation of the gravitation dominated 
dynamics. In the general case, Eq. (19) locates in a precise way the time 
interval in which the evolution of the probability P,,(r) is taking place. 

4, GRAVITATIONAL COLLAPSE WITH GAUSSIAN 
INITIAL VELOCITY DISTRIBUTION 

To proceed further in a more detailed analytic study of P,,(r) we 
assume from now on that the initial velocity distribution is Gaussian with 
the mean-square fluctuation 2 

e x p  - (22) 

The inequalities (19) cannot be applied directly in this case because of a 
nonvanishing probability to find particles with arbitrarily big kinetic 
energy. The change of the integration variables in Eq. (14) 

1 - -  v,,), 

v,, 
~n = y 

r = 1 , 2  ..... n - 1  

(23) 
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yields the expression 

x ~ ( u ] )  ~ ( u 2  - u l )  �9 ". ~ ( u , , _  ~ - u , , _  2)  ~ (  - u , , _  ]) 

x 0 ur+~-s (24) 

In Eq. (24), ~(u) is the Gaussian distribution (22) with covariance 2 = 1 
and the factor (2gn) ~/2 results from the integration over the total velocity 
distribution e x p ( -  u~/2n), which factorizes out after transformation (23). 

At this point, it is useful to observe that the velocities ur = u(sA can be 
considered as the restriction of a continuous Brownian process u(s) to 
integer "times" sr = r, where r = 1 ..... n - I. With this interpretation 

P , , ( r )=  2 x / ~ E w  U(Sr)>~--~-s u ( n ) = 0  (25) 

is [ up to the normalizing factor (2rm) 1/2] the conditional Wiener expecta- 
tion for the paths starting and ending in the origin within "time" s,, = n, 
and being above the parabolic barrier 

- - m l "  
s ( n  - -  s )  

at all integer "times" sr = r, for r - -  1 ..... n -  1. 
For  r < 0 (or t < t*) the paths have to overcome the positive barriers 

u(sr) >_-m [r[ san-st)/22. Then an upperbound to P , ( r )  can easily be given 
by keeping only the requirement that the paths have to pass beyond the 
highest point m[r[n2/82 (assuming n even). This gives 

- m  [r[ exp - 

as r ~ - ~ ,  with characteristic time 

= 42 x/~ 1 
T m n 3/2 

(26) 

(27) 
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For  r > 0 (or  t > t*) we expand  the produc t  of  step functions in (24) as 

"fi 'II--O(--u~---~2r(n--r))] 

= 1 -  0 -u,.--~--~r(n-r) + . . .  ( 2 8 )  

where the terms indicated by an ellipsis involve sums of products  of  at least 
two 0-functions. In  the limit r ~ ~ ,  the dominan t  cont r ibut ion  will be 
given by the two terms r = 1 and r = n -  1 in the sum (28), cor responding  
now to the weakest  constraint .  Thus  

, ~ ( , , -  l )/2~. 2 ( n  - 1 ) 

~ 1 ~ exp - 
m r  ~ / n ( n  - 1) 

(29) 

as r ~ ~ ,  with 

22 v / 2  1 
r+  (30) 

m ,v/~-n - I) 

Al though the asympto t ic  behaviors  of  P,,(r) as r---, + ~ are bo th  Gauss ian ,  
there is a not iceable asymmetry .  C o m p a r i n g  (27) to (30) one sees that  the 
ratio of  the characterist ic times r + / r _  is of  the order  x/~. In part icular ,  if 
the total  mass  M=nrn to be formed is fixed, but n is very large, r _  
vanishes as ( M x / ~ )  - I ,  whereas  r §  remains of  the order  M -~ (this asym- 
metry  in the behav ior  of  P, for t < t* and t > t* appears  clearly in the limit 
of  a cont inuous  initial mass  distr ibution discussed in the next section). 

At r = 0  (i.e., t = t * ) ,  P,,(0) represents the normal ized measure  of  
closed Brownian  paths  u(O)=u(n)=O that  take positive values at all 
integer times sr = r, r = 1,..., n - 1. It is shown in Appendix  A that  

1 
P,,(0) = -  (31) 

n 

Thus the frac~tion of  events for which the total  mass  M - - - n m  is formed 
before t* is always equal to 1/n. This value is universal  in the sense that  it 
does not  depend on other  pa ramete r s  (in par t icular  on the velocity disper- 
sion 2, as long as ). > 0). Fo r  n ~ ~ ,  the probabi l i ty  P , (0 )  ~ 0. As P , ( r )  is 
increasing with r, this implies vanishing of P , ( r )  for all r < 0: the complete  
aggregat ion of a macroscopic  mass  becomes impossible for t < t*. 
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Finally, we note that the step functions in (24) tend to 0(r) if either 
2 --* 0 or n ~ oo. This implies (by dominated convergence) the limits 

lim P,,(r) = 0(r)  (32) 
) . 4 0  

lim P. ( r )  = 0(r) (33) 

Both limits correspond to the gravi ta t ion-dominated regime, and the 
conclusions are the same as those following from the bound  (19) valid for 
densities ~(v) with a compact  support.  

On  the other  hand, we see that 

1 
lim P,,(r) = P,,(0) = -  (34) 

2 4  ~ 1l  

as a consequence of  (31). The limit (34) describes the situation dominated  
by the kinetic energy fluctuations at any time only the fraction 1/11 of  events 
can lead to the aggregat ion of  the total mass. 

5. CONTINUUM LIMIT 

We consider now a limiting situation in which a proper  balance 
between the kinetic and gravitational energies leads to a nontrivial  form of  
the probabil i ty P , ( r ) .  This is achieved by letting n ~ ~ and m ~ 0 in such 
a way that the total mass M = rim, the initial mass density p = m/a, as well 
as 2 are kept constant.  As in this limit a---, 0, the initial mass distribution 
becomes uniform in an interval of  length M/p. Equivalently, one can keep 
m and a fixed, but let n--*oo and ) . ~ G o ,  with n/~ = const. We thus 
rewrite P , ( r )  in the form 

x ~ ( u ~ )  r - u , ) . . .  r  t - u,,_,_) (~(-u,,_,) 

n - -  1 

x I-[ O{u~+h,,(r)} 
r = l  

= ~ Ew[u(r) >>. -h,(r), r = 1,..., n - 1 l u(n) = 0]  ( 3 5 )  
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where the constraint h,,(r) is given by 

( ,,m 
h . ( r )=err  1 -  , e =  2---2 (36) 

Then we find the following result. 

Proposi t ion.  For e fixed, the probabilities P,,(r) converge to a 
limit P(r) as n ~ ~ ,  with 

{0 [ X/~f= ( 2 ) ]  if t<~0 

P ( r ) =  exp - ~ d y F u 2  if r > O  
r 

(37) 

where 

F,~(y)= ~ e x p ( - k y )  
k ~ 

k = l  

Proof. Since e just scales the time variable 3, we set e = 1 without 
loss of generality. 

For r ~< 0, the result was already shown in Section 4 to follow from 
Eq. (31) [it is also a direct consequence of the estimate (26)]. 

For r > 0, we choose k < n/2, and obtain an upper bound to P,,(r) by 
relaxing all the constraints (36) for k +  1 <<.r<<.n-k- 1. We thus find the 
inequality 

S dx] dx,_ 
- -  h n ( k )  - -  h n (  k ) 

x B,,.k(xl) B,,.k(x2) exp[ --(x, --x2)2/2(n--2k)] 
x/2rc(n - 2k) 

where B,,. k denotes the conditional expectation 

(38) 

B..e(x)=Ew[u(r)>>. -h, , (r) ,  r = 1 ..... k - l l u ( k ) = x ) ]  (39) 

To obtain (38) we have used the symmetry of the barrier (36) under the 
change r-~ n - r .  It follows from (39) that 

P,,(r) ~< ~ (B,.k) 2 (40) 
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f 
oo 

B,, ,k= d x B , , k ( x ) = E w [ u ( r ) > ~  - h , , ( r ) , r = l  ..... k ]  
--hnlk) 

(41) 

is the Wiener measure of paths that are above the barrier -h , , ( r )  at "times" 
r = 1 ..... k. Since 

lim h,,(r) = rr 

one obtains by dominated convergence that 

lim B,,,k = B k = Ew[u ( r )  >1 --rr ,  r = 1 ..... k]  (42) 

Moreover, the positive decreasing sequence B k has a limit�9 Letting thus first 
17---, oo and then k ~ oe in (40) leads to 

hm sup P , ( r )  -~ B-, B = lim Bk (43) 

To determine the quantity B we note that under the change 
w(s) = u(s) + rs, 

Bk = E~w[ w(r) >1 O, r = 1,..., k ]  (44) 

becomes the expectation (denoted by E~v [ - ] )  for the random walk with 
shifted distribution of increments ~b~(y)=~b(y-r) .  By the theorem of 
Sparre Andersen (see ref. 2, Section XII.7, Theorem 4), we know that the 
generating function 

of the B k is given by 

p ( z ) =  l + ~" zkBk 
k = l  

7k 

logp(z)  = - k=l -~ Ew[Uk  >~O], 0 ~ < Z < I  

Since the sequence Bk converges to B, we have also 

(45) 

lim( 1 - z) p(z )  = B 
z ~ l  
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and hence from (45) 

1 
log B =  lim log(1 -z)p(z)= ~ Ew[uk-.~ 0 ] 

_-41 k = l  
(46) 

Moreover, since 

Ew[Uk..~O]=Ew[uk<~--rk]= dyexp \ j 

= X/-~ f :  dY exp ( ~  y-~) (47) 

one obtains 

log B : k ~ ,  ~ JT d y e x p ( ~ )  (48) 

This shows that the upper bound B 2 in (43) is equal to the right-hand side 
of (37) for r>0 .  

To obtain a lower bound we strengthen the constraints in (35) by the 
condition that Brownian paths remain above the point h,(k) for all "times" 
s belonging to the interval I-k, 17 - k ] .  In this way one obtains 

e,,/~/~ 2V~J" ,,~ dx, dx2 
- - h , d  k ) 

X B,, .k(X1) Bn.k(X2) Gh,,(kl(X1, klx2, 17-k) (49) 

where 

G,,(Xl, sl ix2, s2) 

_ 1 [ e x p (  
x/2~(x2 - x, ) 

(x2-x')2~ ((x-'-+xL-2a)2'~](50) 
~ 2 - - - - ; ~ )  - e x p  -- 2(s2--s,) JJ 

is the transition probability for Brownian paths restricted to the half-line 
[a, m) with absorption at a. 

It is shown in Appendix B that the right-hand side of inequality (49) 
tends also to B 2 when we choose k = n 6, 1/2 < 6 < 1, and let n ~ m. With 
(43) this concludes the proof of the proposition. 
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Fig. 1. G r a p h  of  probabi l i ty  P( r )  for ~ = 1. 

In the continuum limit the probability to form the total mass before 
t* is identically zero. For  t >  t*, the probability follows the law (37). In 
particular, its large-time behavior 

f: P(r)--- 1 - 2  d y c k ( y ) ,  r--* oo (51) 
T 

agrees with that found in (29), where we let n ~ oo,  n m  = M  fixed. At 
t = t*, we have P ( 0 ) =  0, and from the fact that (3~ 

F i / 2 ( y )  ~ , y ~ 0 

we find 

P(~) "~ (c~r)'-, 0 < ~" --* 0 (52) 

The function P(r)  is shown in Fig. I. 

6. LAST COLLISION 

In order to obtain some information about the ultimate stage of the 
gravitational collapse, we analyze the derivative 

d 
e,,(r) >/0 (53) 

The increase of P,,(z) within the time interval (z, z + A z )  is due to colli- 
sions. When 0 < Ar-*  0, only the last collision contributes. Evaluating the 
derivative (53) thus yields information about the mass distribution just 
before complete aggregation. 
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From Eq. (24) we find that the derivative (53) is given by a sum of 
( n -  1) terms corresponding to crossing of the center-of-mass trajectories of 
clusters composed of k and (17-k) particles (k = 1, 2 ..... n - 1 ) .  The kth 
term has the structure 

where 

m 
-~2 k(n - k) ~ Xk(z) X,, _k(r) (54) 

f t" 
)(,k('g) ~ J dUl . . .  j dUk-  I ~ b ( U l ) ~ ( U 2 - - U l ) ' ' ' ~ ( U k _  I - -Uk_2)  

k } 
x 1--[ 0 Ur+-~r(n--r)  (551 

r = l  

Introducing new integration variables, one arrives at the simple result 

k mr 2} 

We thus find the formula 

V/-~T d nm"~ l { nk (n -k )  (mr'~2"~ 
~ - f f S - ,  P, , (r)= k= exp 2 \ 2 2 /  J 

x ~ Pk(r) ~ P,,-k(r) (571 

At r = 0, inserting relation (31) ,  one gets 

d nm "- 1 1 
N / t ~  -'~ Pn( T l -~" " ~  k~= l J k ( n  __ k I 

nm 
-----re, n~>l (58) 

22 

If we fix all parameters and let ii ~ 0% the derivative diverges as v/~, which 
is consistent with Eq. (33). On the contrary, in the physically relevant con- 
tinuum limit, where 0c = nm/22 is fixed, the rate of change of P,,(z) at r = 0 
tends to zero. The corresponding asymptotic behavior of P(z) is given in 
Eq. (52). 
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A very interesting conclusion follows from Eq. (57) in the region r > 0. 
For  a macroscopic amount of initial matter (n ~ oo) the exponential factor 

exp { 

gives a nonvanishing weight only for a division of the system into a 
macroscopic cluster and a microscopic one: k = c o n s t ,  ( n - k ) ~  oo, or 
equivalently: ( n -  k ) =  const, k ~ oo. This means that at the ultimate stage 
of the evolution a macroscopic aggregate collides with a piece of a 
microscopic dust. In other words, in the continuum limit the essential 
aggregation can be expected to take place in the vicinity of time t = t*, as 
for any r > 0 the last collision cannot involve two macroscopic masses. 
Further comments on this important point are given in the next section. 

7. C O N C L U D I N G  R E M A R K S  

In this paper we have provided a detailed analytic study of the prob- 
ability P,,(t) of forming the total mass M=nm within time t. One should 
realize, however, that P,(t) describes only a particular aspect of the 
aggregation process: a complete description would be given by the deter- 
mination of the evolution of the full mass spectrum in the course of time. 
The special feature of the information contained in P,,(t) stems from the 
requirement that all collisions have taken place. The result (31) shows that 
before time t* there is a vanishingly small probability of forming a single 
aggregate as n ~ oo. On the other hand, according to the discussion in 
Section6, the dominant contribution to P,,(t) for t>t* and n ~  
corresponds to the final aggregation of a microscopic mass km (k finite) 
with the preexisting macroscopic one ( n - k ) m .  Thus the points of the 
curve of Fig. 1 represent events where the completion of the total mass 
occurs by final merging of some pieces of the leftover dust sent away from 
the center of mass of the system with a large initial momentum. These 
events are rare in the sense that they belong to a sampling of the tail of the 
initial velocity distribution. This motivates a less demanding question, 
namely to determine the probability of occurence of a macroscopic mass /Q 
within time t. By a macroscopic mass ,Q = km we mean a finite fraction 
.~r = r/M of the total mass, with q = k/n fixed, 0 < r /< 1, as 17 ~ oo. In the 
continuum limit, preliminary computer simulations lead to the following 
picture, compatible with the above discussion: 

(i) No macroscopic mass can be formed before t*. 

(ii) For  any t > t*, and 0 < tl < 1, a macroscopic mass is formed with 
probability one. 
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A plausible explanation for this phenomenon would be the rapid loss 
of kinetic energy during the first stage of collisions (short time scale of the 
order of a few times between collisions -,~a/2). This initial stage is charac- 
terized by the occurence of many inelastic encounters between small masses 
causing an abrupt drop of the total kinetic energy, while no additional 
kinetic energy has been yet imparted to the bodies from the acceleration by 
gravitational forces. The subsequent evolution of the system is dominated 
by gravitation, so merging into a macroscopic mass occurs in the vicinity 
of the time t*, as discussed in Section 3. 

We comment now on the generalization of our results to larger classes 
of initial distributions. For the sake of obtaining explicit formulas, we have 
worked with the Gaussian probability density (22), but the whole analysis 
can be made for a general initial state with uncorrelated velocities where 

r = ~ 

with ~(v) the density of a continuous one-particle velocity distribution with 
zero mean and finite variance. A remarkable fact is that the relation (31) 
remains true for all such distributions. Considering the probability density 
P,,( V, r) for the formation of the total aggregate M = nm before time z with 
velocity V, we would obtain the following generalization of the proposition 
in the continuum limit: setting V--x/~W, 

lim v/n P,,(.,/~ W, r) 
i i ~  oc 

1 { } 
2 x / ~ e x p  -- ~-~ exp - 2  k=l E~,[uk>~ko~r] (59) 

In (59), E~ is the expectation of the random walk u k generated by ~b. The 
distribution of the center-of-mass velocity decouples asymptotically 
acquireing Gaussian shape by the law of large numbers (in the Gaussian 
case the exact factorization occurs for all n). 

If ~ has support in an interval [ - v  . . . .  V m a x ]  , the expectation 
Ee(u~ >1 k0cr) vanishes whenever 0or > 2v . . . .  so the complete merging into a 
single mass must necessarily take place in the time interval 0 < r ~< 
4,~.Vmax/M, in accordance with the bound (19). 

If the initial velocity distribution gives finite weight to discrete points 
[density ~(v) contains 6 distributions], some care has to be exercised 
because the distinction between inequalities /> and strict inequalities > in 
the constraints becomes relevant. The influence of the initial positional 
disorder is less clear. If we allow for small fluctuations around the regular 

822/84/3-4-34 
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lattice sites :L) = ja, j = 1 ..... n, the result will be qualitatively the same. But 
we have not been able to treat analytically random initial positions 
(Poisson statistics). It would be of interest to obtain more detailed informa- 
tion on the mass distribution in the course of time. In principle our method 
allows us to express such distributions in terms of the microscopic 
dynamics by writing down the appropriate constraints on the center of 
mass of the various clusters involved, but the formulas become cumber- 
some. We plan to come back to these questions both by analytic and 
numerical tools in future work. 

The relevance of our model to astrophysics is questionable because it 
oversimplifies the real problem in two main aspects (see ref. 4, for 
instance). In one dimension, point particles surely hit each other, whereas 
(extended) bodies in higher dimensions may have low hitting probabilities. 
Moreover, the potential (I)  is confining in contrast to the three-dimen- 
sional gravitational potential. A possible generalization of the one-dimen- 
sional dynamics, that could help remedy the first defect is to assume that, 
upon colliding, particles stick with probability q, 0 < q <  1. However, 
replacing the potential (1) by a shorter range one will certainly spoil the 
mechanisms that make the present model solvable. 

APPENDIX A 

For r > 0, consider 

B~ = Ew[u(r) >t- - rr, r = 1 ..... k]  (A.1) 

the Wiener measure (42) of Brownian paths that are above the linear 
barrier - rs for discrete times sr = r, r = 1 ..... k, and 

Bk(-rk) = Ew[u(r)1> - r r ,  r =  1 ..... k -  I I u(k) = - r k ]  (A.2) 

the corresponding conditional expectation for paths that end in - r k  at 
time sk = k. Notice that by the shift w(s)= u(s)+ rs, we can also write 

B~, = E~v[ w(r) >/0, r =  1 ..... k]  (A.3) 

Bk(-rk)=E~v[W(r)>~O,r=l ..... k - l lw(k )=O]  (A.4) 

where E~v is the expectation with respect to the shifted distribution 
~b~(y) = ~ b ( y - r ) .  From (A.4) the relation 

Bk(--~k)=exp (-- ~ - )  Bk(O) (A.5) 
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follows. Differentiating (A.1) with respect to r and using (A.5) yields 

dBk= ~ j exp - j ~  Bj(O) B~_j 
dr j :~ 

(A.6) 

The monotonously decreasing sequence B~ has a limit B. Since the 
sequences B~, and Bk(0) are bounded, the series (A.6) converges uniformly 
with respect to r to 

B~,,.: exp - j  jBj(O) 

for r > 0. Thus, letting k ~ co in (A.6) yields 

drr log B = '~, exp - jBj(O) (A.7) 
j = l  

On the other hand, an application of the theorem of Sparre Andersen [see 
Eqs. (44)-(48)] gives also the expression (48) for log B. Hence, differen- 
tiating (48) with respect to r and comparing with (A.7) leads to 

1 Bj( O ) =j ~ / ~  (A.8) 

from which the result (31) follows since P,,(0)= (2nn) 1/" B,,(0). 

A P P E N D I X  B 

Inserting (50) in (49), we decompose the lower bound as 

P,,(r) >~ l~B~,,k--Rl(n,k)--R2(n,k) 

with 

Rl(n,k)= 17 dx, dx 2 B,,.k(XI) B,,.k(X2) 
--hnik) --hn(k) 

2(n - 2k) JJ 

(B.I) 

(B.2) 
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R2(n, k) = n o~ d.,q ctx2 B,,,k(Xl) B..k(x2) 
- -  h,,( k ) - -  h#( k ) 

(X, +x2+2hn(k))2~ 
x exp - 2 ( n - - ~  J (B.3) 

By removing  the constraints  in (39), we obtain  

1 
B,,. k(x) ~< ~ exp - 

x /2r& 

Hence  

R d n ' k )  <~ JJT--n2k I (B.4) 

and after a change of  variables 

R,_(n,k)<~X/n_-C-~ [ & ,  I &,_ck(x,)(~(xa) 

x exp [ - [ x/~( x ' + xz) + 2h"( k ) ] 2 - 2 k )  (B.5) 

We set k = n  ~ for some ~, 1 / 2 < 8 <  1. Then  lim . . . .  R~(n, n a ) = 0 ,  and we 
observe that  the exponent  in (B.5) is of  the order  n 2a- l for fixed x~, x >  
Thus  lim . . . . .  Rdn,  n a) = 0 by domina ted  convergence.  

It remains to est imate B,,. k. We have the inequali ty 

" E ( k ) ]  Bk-B , , . k  <~ Y. Ew -rr<~u(r )<~-rr  1 -  n 
r = l  

] ~rr X 2 

r =  1 - - k / n )  

~< - -  x/~ exp - = O (B.6) 
n x / ~  )-" - 1 n n r = l  

Thus, for k = n a, 1/2 < ~ < 1, we obta in  

lim B, , . , :=  lim B.~=B (B.7) 
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Hence, setting k = n  ~ in (B.1), and letting 11--* ~ gives 

lim inf P,,(r)/> B 2 
n ~  

and this completes the proof of the proposition. 
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